pycallingcards.plotting.GWAS_adata_bulk#
- pycallingcards.plotting.GWAS_adata_bulk(adata, number=100, bindings=['Chr', 'Start', 'End'], figsize=(8, 40), cmap1='BuPu', cmap2=None, font_scale=1, pad=0.01, rotation=0, title=None, title_top=0.97, title_fontsize=5, save=False)[source]#
Plot GWAS results for different cell types in bulk calling cards data. It considers the relative number of insertions in each group. GWAS data is downloaded from GWAS Catalog.
- Parameters:
adata (
AnnData
) – The anndata object of bulk CC data.number (
int
(default:100
)) – The minimum total number for each SNP.bindings (
list
(default:['Chr', 'Start', 'End']
)) – The name for binding information.figsize (
Tuple
[int
,int
] (default:(8, 40)
)) – The size of the figure.cmap1 (
str
(default:'BuPu'
)) – The colormap of the first heatmap which is the total count of each SNP.cmap2 (
Optional
[str
] (default:None
)) – The colormap of the second heatmap which is the relative number of insertions in each cell type.font_scale (
float
(default:1
)) – The font_scale of the words on the plot (except fot title).pad (
float
(default:0.01
)) – The distance of the color bar from the bottom of the heatmap.rotation (
int
(default:0
)) – The angle of the bottom label of the second heatmaptitle (
Optional
[str
] (default:None
)) – The title of the plot.title_top (
str
(default:0.97
)) – Control the distance of the title from the top of the heatmap.title_fontsize (
float
(default:5
)) – The fontsize of the title.save (
bool
(default:False
)) – Could be bool or str indicating the file name it would be saved as. If True, a default name would be given and the plot would be saved as a png file.
- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mouse_brd4_data(data="CC") >>> adata_cc = cc.tl.liftover(adata_cc, bindings = ['Chr_liftover', 'Start_liftover', 'End_liftover']) >>> cc.pl.GWAS_adata_bulk(adata_cc, bindings = ['Chr_liftover', 'Start_liftover', 'End_liftover'])