pycallingcards.tools.pair_peak_gene_bulk#
- pycallingcards.tools.pair_peak_gene_bulk(adata_cc, deresult, peak_annotation=None, pvalue_adj_cutoff_cc=0.01, pvalue_adj_cutoff_rna=0.01, pvalue_cutoff_cc=None, pvalue_cutoff_rna=None, lfc_cutoff_cc=3, lfc_cutoff_rna=3, distance_cutoff=None, group_cc='fisher_exact', name_cc='logfoldchanges', name_bulk=['pvalue', 'padj', 'log2FoldChange'])[source]#
Pair related peaks and genes. Find out significant binding peaks for one cluster and then see whether the annotated genes are also significantly expressed.
- Parameters:
adata_cc (
AnnData
) – Anndata for callingcardsderesult (
Union
[str
,DataFrame
]) – Results from DEseq2 could be a pandas dataframe or the path to the csv file.peak_annotation (
Optional
[DataFrame
] (default:None
)) – peak_annotation gotten from cc.pp.annotation and cc.pp.combine_annotationpvalue_adj_cutoff_cc (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata_cc.pvalue_adj_cutoff_rna (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata.pvalue_cutoff_cc (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata_cc.pvalue_cutoff_rna (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata.lfc_cutoff_cc (
float
(default:3
)) – The cut off value for the logfoldchange for name_cc of adata_cc.lfc_cutoff_rna (
float
(default:3
)) – The cut off value for the logfoldchange of rna.group_cc (
str
(default:'fisher_exact'
)) – The name of target result in adata_cc.uns.name_cc (
str
(default:'logfoldchanges'
)) – The name of target result in adata.uns[group_cc].
- Return type:
- Returns:
pd.DataFrame with paired genes and peaks for different groups.
- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mouse_brd4_data(data="CC") >>> cc.tl.pair_peak_gene_bulk(adata_cc,"https://github.com/The-Mitra-Lab/pycallingcards_data/releases/download/data/deseq_MF.csv")