pycallingcards.plotting.heatmap#
- pycallingcards.plotting.heatmap(adata_cc, rna=None, figsize=(28, 8), font_scale=1, cmap='BuPu', rnalabels=None, group=None, cclabels=None, log=True, normalize_cc=True, title='Relative calling cards and RNA information', save=False)[source]#
Plot ranking of peaks.
- Parameters:
adata_cc (
AnnData
) – Annotated data matrix.ran – pd.DataFrame. pd.DataFrame for RNA data (genes*sample). Make sure the sample is in the same order as adata_cc.obs
figsize (
Tuple
[int
,int
] (default:(28, 8)
)) – The size of the figure.font_scale (
float
(default:1
)) – The scale of the font size.cmap (
str
(default:'BuPu'
)) – Color map of the plot.rnalabels (
Optional
[list
] (default:None
)) – The labels of the RNA data to be displayed. Be sure the length of list match the number of samples in RNA file.group (
Optional
[str
] (default:None
)) – The group information in anndata object if (sample*peak). It will read anndata.obs[group].cclabels (
Optional
[list
] (default:None
)) – The labels of the CC data to be displayed. Be sure the length of list match the number of samples in CC file.log (
bool
(default:True
)) – Whether to log transform the gene expression or not.title (
str
(default:'Relative calling cards and RNA information'
)) – The title of the plot.save (
Union
[bool
,str
] (default:False
)) – Could be bool or str indicating the file name it would be saved. If True, a default name will be given and the plot would be saved as a png file.
- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mouse_brd4_data(data = "CC") >>> rna = cc.datasets.mouse_brd4_data(data = "RNA") >>> cc.pl.heatmap(adata_cc,rna, rnalabels = ["Female1", "Female2", "Female3","Male1", "Male2","Male3"])