pycallingcards.plotting.rank_peak_groups#
- pycallingcards.plotting.rank_peak_groups(adata_cc, groups=None, n_peaks=10, peak_symbols=None, key='binomtest', rankby='pvalues', fontsize=8, ncols=4, sharey=True, show=True, save=False)[source]#
Plot ranking of peaks.
- Parameters:
adata_cc (
AnnData
) – Annotated data matrix.groups (
Union
[str
,Sequence
[str
],None
] (default:None
)) – The groups used to show the peak ranking.n_peaks (
int
(default:10
)) – Number of peaks that appear in the returned tables.peak_symbols (
Optional
[str
] (default:None
)) – Key for field in .var that stores peak symbols if you do not want to use .var_names.key (
Optional
[str
] (default:'binomtest'
)) – Key for the name of the cluster.fontsize (
int
(default:8
)) – Fontsize for peak names.ncols (
int
(default:4
)) – Number of panels shown per row.sharey (
bool
(default:True
)) – Controls if the y-axis of each panels will be shared or not. By passing sharey=False, each panel has its own y-axis range.show (
Optional
[bool
] (default:True
)) – Controls if the plot shows or not.save (
Union
[bool
,str
] (default:False
)) – Could be bool or str indicating the file name it would be saved as. If True, a default name would be given and the plot will be saved as a png file.
- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mousecortex_data(data="CC") >>> cc.pl.rank_peak_groups(adata_cc,key = 'binomtest')