pycallingcards.tools.GWAS_adata_sc#
- pycallingcards.tools.GWAS_adata_sc(adata, number=100, bindings=['Chr', 'Start', 'End'], clusters=None, cluster_name='cluster')[source]#
Plot GWAS results for different cell types for single-cell calling cards data. It considers the relative number of insertions in each cell type. GWAS data is downloaded from GWAS Catalog.
- Parameters:
adata (
AnnData
) – The anndata object of scCC data.number (
int
(default:100
)) – The minimun total number for each SNP.bindings (
list
(default:['Chr', 'Start', 'End']
)) – The name for binding information.clusters (
Optional
[list
] (default:None
)) – The cluter to consider. If None, it will use all the clusters in adata.obs[cluster_name]cluster_name (
str
(default:'cluster'
)) – The name of cluster in adata.obs.
- Return type:
- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mousecortex_data(data="CC") >>> adata_cc = cc.tl.liftover(adata_cc, bindings = ['Chr_liftover', 'Start_liftover', 'End_liftover']) >>> cc.tl.GWAS_adata_sc(adata_cc)