pycallingcards.tools.rank_peak_groups_df#
- pycallingcards.tools.rank_peak_groups_df(adata, key='rank_peak_groups', group=None, pval_cutoff=None, pval_adj_cutoff=None, logfc_min=None, logfc_max=None)[source]#
pycallingcards.tl.rank_peak_groups()
results in the form of aDataFrame
.- Parameters:
adata (
AnnData
) – Object to get results from.key (
str
(default:'rank_peak_groups'
)) – Key differential expression groups were stored under.group (
Optional
[list
] (default:None
)) – Which group (as inscanpy.tl.rank_genes_groups()
’s groupby argument) to return results from. Can be a list. All groups are returned if groups is None.pval_cutoff (
Optional
[float
] (default:None
)) – Return only p-values below the cutoff.pval_adj_cutoff (
Optional
[float
] (default:None
)) – Return only adjusted p-values below the cutoff.logfc_min (
Optional
[float
] (default:None
)) – Minimum logfc to return.logfc_max (
Optional
[float
] (default:None
)) – Maximum logfc to return.
- Return type:
Example
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mousecortex_data(data="CC") >>> cc.tl.rank_peak_groups(adata_cc,'cluster',method = 'binomtest',key_added = 'binomtest') >>> cc.tl.rank_peak_groups_df(adata_cc,'Astrocyte','binomtest')