pycallingcards.tools.rank_peak_groups#
- pycallingcards.tools.rank_peak_groups(adata_cc, groupby, groups='all', reference=None, n_peaks=None, key_added=None, copy=False, rankby='pvalues_adj', method='fisher_exact', alternative='None', by='None')[source]#
Rank peaks for characterizing groups.
- Parameters:
adata_cc (
AnnData
) – Annotated data matrix.groupby (
str
) – The key of the groups.groups (
Union
[Literal
['all'
],Iterable
[str
]] (default:'all'
)) – Subset of groups (list), e.g. [‘g1’, ‘g2’, ‘g3’], to which comparison shall be restricted, or all (default), for all groups.reference (
Optional
[str
] (default:None
)) – If rest, compare each group to the union of the rest of the group. If a group identifier, compare with respect to this group.n_peaks (
Optional
[int
] (default:None
)) – The number of peaks that appear in the returned tables. The default includes all peaks.key_added (
Optional
[str
] (default:None
)) – The key in adata.uns information is saved to.rankby (
Optional
[Literal
['pvalues'
,'logfoldchanges'
,'pvalues_adj'
]] (default:'pvalues_adj'
)) – The list we rank by.copy (
bool
(default:False
)) – If copy, it will return a copy of the AnnData object and leave the passed adata unchanged.method (
Optional
[Literal
['binomtest'
,'binomtest2'
,'fisher_exact'
]] (default:'fisher_exact'
)) – binomtest uses binomial test, binomtest2 uses binomial test but stands on a different hypothesis of binomtest, fisher_exact uses fisher exact test.alternative (
Optional
[Literal
['two-sided'
,'greater'
,'None'
]] (default:'None'
)) – If it has two samples/cluster, ‘two-sided’ is recommended. Otherwise, please use ‘greater’. For default (‘None’), if groupby == “Index”, it will be ‘two-sided’. Otherwise, please use ‘greater’.
- Returns:
- names - structured np.ndarray (.uns[‘rank_peaks_groups’]). Structured array is to be indexed by the group ID storing the peak names. It’s ordered according to scores.return pvalues - structured np.ndarray (.uns[‘rank_peaks_groups’])return logfoldchanges - structured np.ndarray (.uns[‘rank_peaks_groups’])number - pandas.DataFrame (.uns[‘rank_peaks_groups’]). The number of peaks or the number of cells that contain peaks (depending on the method).number_rest - pandas.DataFrame (.uns[‘rank_peaks_groups’]). The number of peaks or the number of cells that contain peaks (depending on the method).
- Return type:
Optional
[AnnData
] | total - pandas.DataFrame (.uns[‘rank_peaks_groups’]). The total number of cells that contain peaks. | total_rest - pandas.DataFrame (.uns[‘rank_peaks_groups’]). The total number of cells that contain peaks.- Example:
>>> import pycallingcards as cc >>> adata_cc = cc.datasets.mousecortex_data(data="CC") >>> cc.tl.rank_peak_groups(adata_cc,'cluster',method = 'binomtest',key_added = 'binomtest')