pycallingcards.tools.pair_peak_gene_sc_mu#
- pycallingcards.tools.pair_peak_gene_sc_mu(mdata, adata_cc='CC', adata='RNA', peak_annotation=None, pvalue_adj_cutoff_cc=0.01, pvalue_adj_cutoff_rna=0.01, pvalue_cutoff_cc=None, pvalue_cutoff_rna=None, lfc_cutoff=3, score_cutoff=3, distance_cutoff=None, group_cc='binomtest', group_adata='rank_genes_groups', group_name='RNA:cluster', save_name='pair')[source]#
Pair related peaks and genes. Designed for mudata object. Find out significant binding peaks for one cluster and then see whether the annotated genes are also significantly expressed.
- Parameters:
mdata (
MuData
) – mdata for both CC and RNA.adata_cc (
str
(default:'CC'
)) – Name for CC data. Anndata is mdata[adata_cc].adata (
str
(default:'RNA'
)) – Name for RNA data. Anndata is mdata[adata].peak_annotation (
Optional
[DataFrame
] (default:None
)) – peak_annotation gotten from cc.pp.annotation and cc.pp.combine_annotationpvalue_adj_cutoff_cc (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata_cc.pvalue_adj_cutoff_rna (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata.pvalue_cutoff_cc (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata_cc.pvalue_cutoff_rna (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata.lfc_cutoff (
float
(default:3
)) – The cut off value for the logfoldchange of adata_cc.score_cutoff (
float
(default:3
)) – The cut off value for the cut of score value for adata.distance_cutoff (
Optional
[float
] (default:None
)) – The cut off value for the cut of distance from peak to gene.group_cc (
str
(default:'binomtest'
)) – The name of target result in adata_cc.uns.group_adata (
str
(default:'rank_genes_groups'
)) – The name of target result in adata.uns.group_name (
str
(default:'RNA:cluster'
)) – The name of the cluster in mdata.obs.save_name (
str
(default:'pair'
)) – The name saved in mdata[adta_CC].uns.
- Return type:
MuData
- Example:
>>> import pycallingcards as cc >>> mdata = cc.datasets.mousecortex_data(data="Mudata") >>> cc.tl.pair_peak_gene_sc_mu(mdata, pvalue_cutoff_cc = 0.001, pvalue_cutoff_rna = 0.001, lfc_cutoff = 3, score_cutoff = 3)