pycallingcards.tools.pair_peak_gene_sc#
- pycallingcards.tools.pair_peak_gene_sc(adata_cc, adata, peak_annotation=None, pvalue_adj_cutoff_cc=0.01, pvalue_adj_cutoff_rna=0.01, pvalue_cutoff_cc=None, pvalue_cutoff_rna=None, lfc_cutoff=3, score_cutoff=3, distance_cutoff=None, group_cc='binomtest', group_adata='rank_genes_groups', group_name='cluster')[source]#
Pair related peaks and genes. Find out the significant binding peaks for one cluster and then see whether the annotated genes are also significantly expressed.
- Parameters:
adata_cc (
AnnData
) – Anndata for callingcardsadata (
AnnData
) – Anndata for RNA.peak_annotation (
Optional
[DataFrame
] (default:None
)) – peak_annotation gotten from cc.pp.annotation and cc.pp.combine_annotationpvalue_adj_cutoff_cc (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata_cc.pvalue_adj_cutoff_rna (
Optional
[float
] (default:0.01
)) – The cut off value for the adjusted pvalues of adata.pvalue_cutoff_cc (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata_cc.pvalue_cutoff_rna (
Optional
[float
] (default:None
)) – The cut off value for the pvalues of adata.lfc_cutoff (
float
(default:3
)) – The cut off value for the logfoldchange of adata_cc.score_cutoff (
float
(default:3
)) – The cut off value for the cut of score value for adata.group_cc (
str
(default:'binomtest'
)) – The name of target result in adata_cc.uns.group_adata (
str
(default:'rank_genes_groups'
)) – The name of target result in adata.uns.group_name (
str
(default:'cluster'
)) – The name of the cluster in adata_cc.obs.
- Return type:
- Returns:
pd.DataFrame with paired genes and peaks for different groups.
- Example:
>>> import pycallingcards as cc >>> import scanpy as sc >>> adata_cc = sc.read("Mouse-Cortex_cc.h5ad") >>> adata = cc.datasets.mousecortex_data(data="RNA") >>> qbed_data = cc.datasets.mousecortex_data(data="qbed") >>> peak_data = cc.pp.callpeaks(qbed_data, method = "CCcaller", reference = "mm10", maxbetween = 2000, pvalue_cutoff = 0.01, lam_win_size = 1000000, pseudocounts = 1, record = True) >>> peak_annotation = cc.pp.annotation(peak_data, reference = "mm10") >>> peak_annotation = cc.pp.combine_annotation(peak_data,peak_annotation) >>> sc.tl.rank_genes_groups(adata,'cluster') >>> cc.tl.pair_peak_gene_sc(adata_cc,adata,peak_annotation)