pycallingcards.tools.result_mapping#
- pycallingcards.tools.result_mapping(data, torlerance=10, original_genome='mm10', new_genome='hg38')[source]#
Map from one genome to another for the result table [Hinrichs et al., 2006].
- Parameters:
data (
DataFrame
) – pd.DataFrame of result. It contains ‘Peak’ and ‘Gene’.torlerance (
int
(default:10
)) – The max multiples allows for the length of new_genome to be compared with to the original one.original_genome (
str
(default:'mm10'
)) – The original genome.new_genome (
str
(default:'hg38'
)) – The new genome.
- Return type:
- Example:
>>> import pycallingcards as cc >>> import scanpy as sc >>> adata_cc = sc.read("Mouse-Cortex_cc.h5ad") >>> adata = cc.datasets.mousecortex_data(data="RNA") >>> qbed_data = cc.datasets.mousecortex_data(data="qbed") >>> peak_data = cc.pp.callpeaks(qbed_data, method = "CCcaller", reference = "mm10", maxbetween = 2000, pvalue_cutoff = 0.01, lam_win_size = 1000000, pseudocounts = 1, record = True) >>> peak_annotation = cc.pp.annotation(peak_data, reference = "mm10") >>> peak_annotation = cc.pp.combine_annotation(peak_data,peak_annotation) >>> sc.tl.rank_genes_groups(adata,'cluster') >>> result = cc.tl.pair_peak_gene_sc(adata_cc,adata,peak_annotation) >>> result = cc.tl.result_mapping(result)